Эффект хлыста

Материал из Supply Chain Management Encyclopedia

Перейти к: навигация, поиск

English: Bullwhip effect

Файл:Bullwhip effect.png
Иллюстрация эффекта хлыста: The ultimate customer places an order (whip) and order fluctuations build up upstream the supply chain.

Эффект хлыста (или эффект подхлестывания, или эффект производности спроса, или эффект Форрестера; англ. – bullwhip effect, demand amplification, whip-saw, whiplash effect, or Forrester effect) – феномен в цепях поставок, который заключается в усилении изменчивости спроса по мере удаления от реального источника спроса в цепи поставок[1]. Это означает, что колебания в "конце" цепи поставок (ближе к потребителю, например, на уровне розничного торговца) намного слабее по сравнению с друим "концом" цепи поставок (далеко от потребителя, например, на уровне производителя или поставщика). Двигаясь в цепи поставок от потребителя к поставщику колебания заказов усиливаются. Чем больше звеньев в цепи поставок и чем длинее время выполнения заказов, тем значительнее колебания.


Первое упоминание об этом явлении принадлежит, наверное, Дж. Форрестеру [2] (вот почему в некоторых литературе можно найти ссылки на эффект Форрестера, однако сам Дж. Форрестер никогда не назвал его ни эффектом Форрестера, ни эффектом кнута). Иногда термин "эффект Форрестера" используется для обозначения того, что называются обработка сигнала спроса, т.к. Дж. Форрестер был первым, кто продемонстрировал этот фактор с помощью динамического моделирования. В 1997 году эффект кнута был популяризирован коллективом автором под руководством Ли[3].

Эффект кнута имеет крайне негативное воздействие на эффективность упрваления цепями поставок. Это приводит к чрезмерному увеличению страховых запасов, ненужному увеличение производственных затрат и накладных расходов, потенциального искажения качества, и, что еще хуже, ухудшения качества обслуживания клиентов и упущенным продажам, увеличению расходов на логистику и т.д.

Содержание

Causes and Consequences of the Bullwhip Effect

Lee et al.[4] identified four major causes of the bullwhip effect:

  • Demand forecast updating. Forecasting and production plans are often based on the order history from company's immediate customer. This immediate customer, however, rarely make exactly the same orders in short period of time as it received from its own immediate customer due to various reasons, including sales expectations, risk aversion, personal factors, production specifics, etc. As soon as manager see the change in downstream orders, he or she readjusts its own plans, however this order might not (and often not) reflect real demand situation. As a result, each member of supply chain makes a little bit different order from what it received and, finally, the supplier receives the order which is totally different from real market dynamics. This situation is very common, because if lead time is more, than 0 (and it is 0 only in electronic goods sales), it is not uncommon to have safety stocks. The higher lead times, the bigger safety stocks. These safety stocks on one hand are the cause of inefficiency In supply chain, because they require extra operation budget, and on the other hand, they increase the bullwhip effect itself.
  • Order batching. Orders usually accumulated in batches: periodic (daily, weekly, monthly, etc.) or push. Batches also increase the bullwhip effect. The reason for batches is different: from order processing costs (how much does the company spend on managing the orders) to transportation issues. Sometimes this effect is referred as Burbidge effect[5]. Burbidge points out particular problems that this effect might cause shopkeepers unless duly watched.
  • Price fluctuation. Manufacturer or retailer often make different promotion programs (special discounts, price terms, rebates, etc.). These programs cause price fluctuations. As a result, customers see different price and react differently. For more information see [EDLP]
  • Rationing and shortage gaming. If producer is not able to fulfill the excessive demand in short period of time, and retailer (wholesaler or distributor) know about it, they will act to increase the orders to get at least something. For example, if retailer really needs 100 pieces of product and it knows that producer will fulfill only about 50% of the order, it will order 200. However, very often, 200 pieces is “the real picture” for the supplier and it make its strategic decisions basing on this information, however in the next period there might be only 100 (real) pieces in order from retailer. Behavioral psychology often resorts to the term bounded rationality implying sub-optimal but borderline rational decision making by actors[6]. Rationing and gaming are sometimes referred to as the Houlihan effect after Houlihan[7]. This effect suggests that missed deliveries lead to higher safety stock levels and thus inflated orders. As more orders are made, the chain becomes more vulnerable to unreliable sources as reliable ones lack capacity to increase production instantly. All of this leads to bullwhip effect going up the supply chain with increasing magnitude. Houlihan described this process as the flywheel effect. Olsmats et al. (1988) demonstrated this phenomenon in action in the automotive sector. Price variation describes offering goods and services to consumers at lower prices through various promotions in order to boost immediate demand assuming elasticity[8].

Some of researchers try to find origins of the bullwhip effect problems in psychology of manager, who takes a decision. Using modeling of bullwhip effect with a beer game, they prove that manager use one of two basic strategies: ‘safe harbor’ or ‘panic’, both of them have negative impact on the supply chain efficiency. However, as soon as there is a chance for negotiation, the results of simulation become much better [9].

Particularly negative impacts of the bullwhip effect for the supply chain are:

  • Inefficient inventory management. The varying demand leads to variation in inventory levels at each tier of the supply chain. As supplier receives order, which is higher than the order on previous period, the company has to increase inventory level. On the other hand, if the order level is lower, it is not always possible to decrease inventory level in short period of time. The higher variability in demand (in orders), the higher safety stocks should be. Safety stock have trend to increase, as moving away from point of consumption.
  • Backlogged orders and poor service to product outlets. The safety stock that is required to ensure a sufficient service level increases with the variation in the demand, however, it is not always enough to fulfill excessive demand (orders). Hence, sometimes companies might face absence of goods on the shelves of the retailer.
  • Unpredictable production schedules. A variation in demand causes variation in capacity usage. During “high” period producer usually has to increase the number of shifts. During “low” period – to make extra safety stocks or leave workers without any work (both cases lead to financial losses).
  • High prices for raw materials because of immediate need. In case of emergent need of producing the order, producer often face a situation of absence of raw materials (of some of raw materials). Ordering even small part of raw materials from supplier on emergence will cost to producer enormously high price (at least for unscheduled transportation) .
  • Lost revenues. All these leads to financial losses: extra safety stocks (means more capital employed) or missed orders (missed sales).


Analyses of recent papers shows that researchers do not argue about the causes and consequences of bullwhip effect, but try to find remedies for negative impact on the supply chain performance.

Example of the Bullwhip Effect

Usually consumption of most FMCG goods is stable. For instance, consumption of diapers by babies – is constant; consumption of bread, salt, ketchup and other food – constant, etc. Retailers very often see smooth demand with minor fluctuations as seen on the figure below.


Making its own orders, however, retailer take in account own stock levels (from previous periods), sales expectations (including expectations on own advertising and promotion), discounts from manufacturer or distributor, the price of transportation, order processing and other minor factors. Orders are not that smooth any more.


Orders from wholesaler to distributor are even more volatile due to the same reasons.


At the end of supply chain, orders to manufacturer are even more variable. Manufacturer now has to solve problems of extra shifts or extra safety stock to fulfill all the orders. Extra costs and order failures are very common in this situation.


The bullwhip effect has been studied well and diagnosed as a significant problem in general [10],[11], as well as in particular companies or industries:

  • Hi-tech industry[12]
  • Grocery industry[13]
  • Manufacturing sector[14]
  • and other.

Analysis of the Bullwhip Effect

The bullwhip effect was analyzed by various researchers with different methods:

  • Simulation approach [15]
  • Evolutionary least-mean-square algorithm [16]
  • Beer game simulation with different demand scenarios [17]
  • Multi-echelon supply chain system [18]
  • Analytical approach

Bullwhip Effect Simulation (Beer Game)

Файл:Beergame.png
Beergame illustration. Source: Nienhaus J., Ziegenbein A. and Schoensleben P. (2006) How human behavior amplifies the bullwhip effect. A study based on the beer distribution game online, Production Planning & Control, Vol. 17, No. 6, p.547–557

Bullwhip Effect Simulation Game (Beer Game, also known as beer distribution game), which was developed by the Systems Dynamics Group at the Massachusetts Institute of Technology in the 1960s. It demonstrates the bullwhip effect by simulating a supply chain with four tiers: the retailer, the wholesaler, the distributor or the factory. It might be played in class or on-line and is very effective mean of illustrating systems thinking. By enabling managers to experience the negative impact of the bullwhip effect on supply chain performance, the beer game makes them aware of the application of countermeasures in their companies<rev> Nienhaus J., Ziegenbein A. and Schoensleben P. (2006) How human behavior amplifies the bullwhip effect. A study based on the beer distribution game online, Production Planning & Control, Vol. 17, No. 6, p.547–557</ref>. Each player takes the role (individually or in group of 2-3 players) one of the roles. An ultimate customer places orders at the retailer (buys beer). His demand is defined, but unknown to the participants. The ultimate demand is four units (bottles, packs of beer) during the first six periods (including “test” or “zero” period) and eight units during the following periods of the simulation. The game usually lasts for 50-70 period. It is enough to diagnose bullwhip effect. Each period represents one week. During this period participants have to make important decisions and activities in strict order:

  • Each player (team) receives order from their customer. For retailer it is pre-defined order (demand). For the rest of players it is orders from previous players (eg order from wholesaler for distributor).
  • Each player (team) makes a decision of how much to order. This decision is based on received order, on backlogged orders (all orders should be accomplished), on previous orders, on inventory left in stock and other factors.
  • Each player (team) has to minimize its costs. A product on stock (safety stock) costs $0.50 per product per period. Backlogged orders costs $1.00 per product per period (penalty for out-of-stock situations). Thus participants have to take into account a trade-off between minimizing the costs of capital employed in stocks on the one hand and avoiding of out-of-stock situations, on the other hand.

Information flow (the information of how much to order) moves along supply chain with a delay of one week. It represents common situation in real companies. Good flow has a delay of two weeks due to transportation. Producer gets its orders from production after two weeks as well (to make it easier it is possible to say that one week is for production and one week is for quality control and packaging). Some important rules to remember:

  • Do not try to look for your demand before there is time to.
  • Do not change the sequence of steps.
  • Do not mix the orders and finished products.
  • It is possible to make 0 order.
  • If you missed the round, don’t try to catch-up. Make sure that all other members did it correctly.

Remedies for the Bullwhip Effect

Lee et al. (1997) proposed a framework for supply chain initiatives to deal with the bullwhip effect: information sharing, channel alignment, operational efficiency. It was criticized for general approach and since then a lot of papers on this topic, trying to find more general or more specific solutions:

Information sharing is one of the most important tools for minimizing bullwhip effect. Most of contemporary tools and approaches, including VMI, CPFR, etc. and technical innovations, such as RFID use this principle. The importance of information in supply chains:

  • Helps reduce variability in supply chains
  • Help suppliers make better forecast
  • Enables the coordination system of manufacturing and distribution systems and strategies
  • Enables retailers to better serve their customers
  • Enables retailers to react and adapt to supply chain problems more rapidly
  • Enables lead time reductions

References

  1. Lee H.L., Padmanabhan V. and Whang S. (1997) Information distortion in a supply chain: The bullwhip effect, Management Science; Apr 1997; 43, 4; p.546
  2. Forrester J.W., (1961) Industrial dynamics. New York: MIT Press and John Wiley & Sons.
  3. Lee H.L., Padmanabhan V. and Whang S. (1997) The bullwhip effect in supply chains. Sloan Management Review 38(3) p93–102
  4. Lee H.L., Padmanabhan V. and Whang S. (1997) The bullwhip effect in supply chains. Sloan Management Review 38(3) p93–102
  5. Burbidge J.L. (1991) Period Batch Control (PBC) with GT – the Way Forward from MRP, PBCIS Annual Conference, Birmingham, UK
  6. Sterman J.D. (1989) Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiments. Management Science, 35 (3), p321–339
  7. Houlihan J. B. (1988) International supply chains : a new approach. Management Decisions. Vol. 26. p13-19.
  8. Olsmats C. M., Edghill J. S. and Towill D. R. (1988) Industrial dynamics model building of a close-coupled production-distribution system. Engineering Costs & Production Economics, Vol. 13 Issue 4, p295-310, 16p
  9. Nienhaus J., Ziegenbein A. and Schoensleben P. (2006) How human behavior amplifies the bullwhip effect. A study based on the beer distribution game online Production Planning & Control, Vol. 17, No. 6, 547–557
  10. Buzzell R. D., J. A. Quelch and W. J. Salmon (1990) The costly bargain of trade promotion. Harvard Business Review, 68, p141–148
  11. Richard M. (1997) Quantifying the bullwhip effect in supply chains. Journal of Operations Management, Vol. 15 Issue 2, p89-100
  12. Kelly, K. 1995. Burned by busy signals: Why Motorola ramped up production way past demand. Business Week 6 36
  13. Holmstrom, J. 1997. Product range management: a case study of supply chain operations in the European grocery industry. Supply Chain Management 2(3) 107–115
  14. Dooley K., Yan T., Mohan S., Gopalakrishnan M. (2010) Inventory management and the bullwhip effect during the 2007–2009 recession: evidence from the manufacturing sector. Journal of Supply Chain Management, Vol. 46 Issue 1, p12-18
  15. Wangphanich P., Kara S. and Kayis B. (2010) Analysis of the bullwhip effect in multi-product, multi-stage supply chain systems-a simulation approach, International Journal of Production Research; Aug2010, Vol. 48 Issue 15, p4501-4517
  16. Tseng L-T., Tseng L-F., Chen H-C. (2011) Exploration of the bullwhip effect based on the evolutionary least-mean-square algorithm, International Journal of Electronic Business Management, Vol. 9 Issue 2, p160-168
  17. Matteo C., Chiara R., Tommaso R. and Fernanda S. (2010) Bullwhip effect and inventory oscillations analysis using the beer game model, International Journal of Production Research, Vol. 48 Issue 13, p3943-3956
  18. Xiao-Yuan, H. (2007) An H∞ control method of the bullwhip effect for a class of supply chain system. International Journal of Production Research, Vol. 45 Issue 1, p207-226
  19. Disney S.M. and Towill D.R., (2003) On the bullwhip and inventory variance produced by an ordering policy. Omega, 31 (3), 157–167
  20. Kelle P. and Milne A. (1999) The effect of (s,S) ordering policy on the supply chain. International Journal of Production Economics, 59 (1–3), 113–122
  21. Pujawan I.N. (2004) The effect of lot sizing rules on order variability. European Journal of Operations Research, 159 (3), 617–635
  22. Zhang X. (2005) Delayed demand information and dampened bullwhip effect. Operations Research Letters, 33 (3), 289–294
  23. Zhao X. and Xie J. (2002) Forecasting errors and the value of information sharing in a supply chain. International Journal of Production Research, 40 (2), 311–335
  24. Croson R. and Donohue K. (2005) Upstream versus downstream information and its impact on the bullwhip effect. System Dynamics Review, 21 (3), 249–260
  25. Ingalls R.G., Foote B.L. and Krishnamoorthy A. (2005) Reducing the bullwhip effect in supply chains with control-based forecasting. International Journal of Simulation & Process Modelling, 1–2 (1), 90–110
  26. Lin C. and Lin Y. (2006) Issues in the reduction of demand variance in the supply chain. International Journal of Production Research, 44 (9), 1821–1843
  27. Qing Cao and Leggio K. (2008) Alleviating the bullwhip effect in supply chain management using the multi-agent approach: an empirical study. International Journal of Computer Applications in Technology, Vol. 31 Issue 3/4, p225-237

KK

Личные инструменты
Our Partners